Ground granulated blast-furnace slag ( GGBS or GGBFS) is obtained by quenching molten iron slag (a by-product of iron and steel-making) from a blast furnace in water or steam, to produce a Glassy phase, granular product that is then dried and ground into a fine powder. Ground granulated blast furnace slag is a latent hydraulic binder forming calcium silicate hydrates (C-S-H) after contact with water. It is a strength-enhancing compound improving the durability of concrete. It is a component of metallurgic cement ( in the European norm ). Its main advantage is its slow release of Reaction heat, allowing limitation of the temperature increase in massive concrete components and structures during cement setting and concrete curing, or to cast concrete during hot summer.
The main components of blast furnace slag are CaO (30–50%), SiO2 (28–38%), Al2O3 (8–24%), MnO, and MgO (1–18%). In general increasing the CaO content of the slag results in raised slag basicity and an increase in compressive strength. The MgO and Al2O3 content show the same trend up to respectively 10–12% and 14%, beyond which no further improvement can be obtained. Several compositional ratios or so-called hydraulic indices have been used to correlate slag composition with hydraulic activity; the latter being mostly expressed as the binder compressive strength. The glass content of slags suitable for blending with Portland cement typically varies between 90 and 100% and depends on the cooling method and the temperature at which cooling is initiated. The glass structure of the quenched glass largely depends on the proportions of network-forming elements such as Si and Al over network-modifiers such as Ca, Mg and to a lesser extent Al. Increased amounts of network-modifiers lead to higher degrees of network depolymerization and reactivity.
Common crystalline constituents of blast-furnace slags are merwinite and melilite. Other minor components which can form during progressive crystallization are belite, monticellite, rankinite, wollastonite and forsterite. Minor amounts of reduced sulphur are commonly encountered as oldhamite.
Two major uses of GGBS are in the production of quality-improved slag cement, namely Portland Blastfurnace cement (PBFC) and high-slag blast-furnace cement (HSBFC), with GGBS content ranging typically from 30 to 70%; and in the production of ready-mixed or site-batched durable concrete.
Concrete made with GGBS cement sets more slowly than concrete made with ordinary Portland cement, depending on the amount of GGBS in the cementitious material, but also continues to gain strength over a longer period in production conditions. This results in lower heat of hydration and lower temperature rises, and makes avoiding easier, but may also affect construction schedules where quick setting is required.
Use of GGBS significantly reduces the risk of damages caused by alkali–silica reaction (ASR), provides higher resistance to chloride ingress — reducing the risk of reinforcement corrosion — and provides higher resistance to attacks by sulfate and other chemicals.
The use of GGBS in addition to Portland cement in concrete in Europe is covered in the concrete standard EN 206:2013. This standard establishes two categories of additions to concrete along with ordinary Portland cement: nearly inert additions (Type I) and pozzolanic or latent hydraulic additions (Type II). GGBS cement falls in the latter category. As GGBS cement is slightly less expensive than Portland cement, concrete made with GGBS cement will be similarly priced to that made with ordinary Portland cement.
It is used partially as per mix ratio.
Bulk Electrical Resistivity is a test method that can measure the resistivity of concrete samples. (ASTM 1876–19) The higher electrical resistivity can be an indication of higher ion transfer resistivity and thus higher durability. By replacing up to 50% GGBS in concrete, researchers have shown that some durability properties can be significantly improved.
To protect against chloride attack, GGBS is used at a replacement level of 50% in concrete. Instances of chloride attack occur in reinforced concrete in marine environments and in road bridges where the concrete is exposed to splashing from road de-icing salts. In most NRA projects in Ireland GGBS is now specified in structural concrete for bridge piers and for protection against chloride attack. The use of GGBS in such instances will increase the life of the structure by up to 50% had only Portland cement been used, and precludes the need for more expensive stainless steel reinforcing.
GGBS is also routinely used to limit the temperature rise in large concrete pours. The more gradual hydration of GGBS cement generates both lower temperature peak and less total overall heat than Portland cement. This reduces thermal gradients in the concrete, which prevents the occurrence of microcracking which can weaken the concrete and reduce its durability, and was used for this purpose in the construction of the Jack Lynch Tunnel in Cork.
The optimum dosage of Ground granulated blast-furnace slag (GGBS) for replacement in concrete was reported to be 20-30% by mass to provide higher compressive strength compared to the concrete made with only cement.
Sustainability
Notes
External links
|
|